CMPE 58C - Wireless Sensor Networks

MAC Layer
Shared Medium Access & Sleep Scheduling
Contents

- Medium Access Control
- Evolution of MAC in Wireless Networks
- MAC Design Space in WSNs
- Energy Efficiency – Sleep Scheduling
- Taxonomy
 - Random Access Protocols
 - Slotted Protocols
 - Schedule Based Protocols
- Current Trends
 - Hybrid Protocols
 - IEEE 802.15.4
References

• Based on the material from

Part 1

General Perspective
Medium Access Control

- Control access to the “shared” medium (radio channel)
 - when to send a packet, when to listen for a packet
 - avoid interference between transmissions
 - mitigate effects of collisions (retransmit or leave to upper layers)
Requirements in WSNs

<table>
<thead>
<tr>
<th>Requirements/Objectives</th>
<th>Wireless Networks</th>
<th>WSNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairness</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy Efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scalability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adaptability</td>
</tr>
</tbody>
</table>
Brief Historic Perspective

Evolution of MAC in Wireless Networks

• Since 1970s,

• increased activity since late 1990s after the successful introduction of W-LAN

• Contention Based Protocols
 - Aloha
 - CSMA
 - MACA
 - IEEE 802.11

• Schedule Based Protocols
 - TDMA
Aloha (1970s)

• Unslotted Aloha
 - transmit a packet when it is generated
 - simple (ACK/NO ACK)
 - Poor use of channel capacity (Max. throughput 18%)

• Slotted Aloha
 - allows transmissions only in synchronized slots
 - Slightly better utilization: 35%
CSMA (1975)

- first listen to the channel for a small period
- Clear channel \rightarrow transmit
- Busy channel \rightarrow random back-off period
- takes some time to switch the radio from rx to tx, the CSMA method is not bullet proof and collisions can still occur
MACA - CSMA/CA (1990s)

- CSMA is fine when every node can sense each other but hidden terminal problem may occur.

- 3-way handshake (RTS/CTS/DATA)
- When 2 RTSs collide, no CTS is received, nodes back off.
MACA – CSMA/CA

• Too good to silence other nodes
 - the “exposed terminal problem”

- Adjustment: Since C does not hear CTS, can transmit
IEEE 802.11 (1999)

• Operation
 - infrastructure mode (access point)
 - ad-hoc mode

• Protocol
 - DCF: Distributed Coordination Function
 • carrier sense
 • collision avoidance
 - PCF: Point Coordination Function
 • Access point polls the data
• Network Allocation Vector (NAV) - virtual carrier sensing
 - collision avoidance
 - overhearing avoidance: other nodes may sleep and wake up when a transmission is finished
Schedule based - TDMA: Spatial TDMA (1985)

- Communication is scheduled in advance
 - no contention
 - no overhearing
 - support for delay-bound traffic (voice)

- Time-Division Multiple Access
 - time is divided into slotted frames
 - access point broadcasts schedule
TDMA

- Typical WLAN setup
 - no direct communication between nodes
 - access point broadcast Traffic Control (TC) map
 - (new) nodes signal needs in Contention Period (CP)
MAC Design Space in WSNs
- WSN Characteristics
- Energy Efficiency
Characteristics

- Hardware characteristics
- Communication patterns
- Other services expected from MAC
- Energy efficiency
Hardware Characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>ATMEL 8535</td>
<td>ATmega128L</td>
<td>TI MSP430</td>
<td>Intel PXA271</td>
</tr>
<tr>
<td></td>
<td>8-bit, 4 MHz</td>
<td>8-bit, 8 MHz</td>
<td>16-bit, 8 MHz</td>
<td>32-bit, 13-416 MHz</td>
</tr>
<tr>
<td></td>
<td>36 μW sleep</td>
<td>36 μW sleep</td>
<td>15 μW sleep</td>
<td>390 μW sleep</td>
</tr>
<tr>
<td></td>
<td>60 mW active</td>
<td>60 mW active</td>
<td>5.4 mW active</td>
<td>≥ 31 mW active</td>
</tr>
<tr>
<td>Memory</td>
<td>512B RAM</td>
<td>4 KB RAM</td>
<td>10 KB RAM</td>
<td>32 MB RAM</td>
</tr>
<tr>
<td></td>
<td>8 KB Flash</td>
<td>128 KB Flash</td>
<td>48 KB Flash</td>
<td>32 MB Flash</td>
</tr>
<tr>
<td>Radio</td>
<td>RFM TR1000</td>
<td>CC1000</td>
<td>CC2420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Kbps</td>
<td>76 Kbps</td>
<td>250 Kbps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 μW sleep</td>
<td>100 μW sleep</td>
<td>60 μW sleep</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 mW receive</td>
<td>36 mW receive</td>
<td>63 mW receive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36 mW xmit</td>
<td>75 mW xmit</td>
<td>57 mW xmit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 ms setup</td>
<td>2 ms setup</td>
<td>1 ms setup</td>
<td></td>
</tr>
</tbody>
</table>

Energy in sending and receiving is 2-3 orders of magnitude higher than sleeping.
Communication Patterns

• **Convergecast**: Many to one
 - Increased overhead to repeat the messages
 - Bottleneck around the sink

• **Local gossip**
 - In-network processing

• **Flooding**
 - One-to-many
 - Code update, Bug fix
Other Services

Cross-Layer Optimization

• Feedback to
 - Localization
 - Time synchronization

• Routing Layer
 - Neighbor discovery
 - Network topology

• Since MAC is on top of physical layer, can provide these at no cost

 Exact moment of transmission

 Nodes in the range?
Energy Efficiency
Sleep Scheduling Techniques
Part 3
Energy Efficiency

- Transmissions are costly
- Receiving about as expensive as transmitting (sometimes higher)
- Idling can be cheaper but is still expensive

<table>
<thead>
<tr>
<th>CC2420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep: 60 micro-watt.</td>
</tr>
<tr>
<td>Receive: 63 mW</td>
</tr>
<tr>
<td>Transmit: 57 mW</td>
</tr>
</tbody>
</table>
Sources of energy consumption/overhead

• Idle listening
 - Listening to receive possible traffic

• Collisions

• Overhearing
 - Receiving packets not intended to itself, problem in dense deployments

• Overemitting
 - Transmitting when the receiver is not ready

• Protocols overhead
 - Beacons, control packets, MAC headers

• Traffic fluctuations
 - Bursty traffic
Energy efficiency in traditional protocols?

- **IEEE 802.11**
 - Nodes inform the access point (AP) when they wish to enter sleep mode (infrastructure mode)

- **PAMAS in MACA**
 - 2 radios on a node
 - RTS/CTS signaling is carried out on a separate radio channel: prevents the collisions of larger data messages
 - Receiver sends a busy tone on the control channel to prevent others to transmit on data channel
 - Go to sleep whenever overhear a neighbor transmitting or whenever no packet to transmit
Energy efficiency in WSNs at MAC Layer

- Sleep in the majority of the time
 - switch radio off when possible (duty cycle)
 - still ensure that a node is awake when a packet intended for it

- Asynchronous Sleep Techniques
 - Secondary Wake Up Radio
 - Low Power Listening, Preamble Sampling
 - Transmitter/receiver-initiated cycle receptions (TICER/RICER)

- Synchronous Sleep Scheduling
 - Duty Cycling
Secondary Wake Up Radio

• 2 radios on a node
• Primary radio
 - Remains asleep by default
• Low-power secondary radio
 - Wakes up the primary radio if a wakeup signal is detected
• Used in Pico Radio project
• Motivation: the secondary radio is extremely low-power
Low-power listening/preamble sampling

• Receiver periodically wakes up, senses the channel
• Transmitter sends a preamble
 - Higher level packet or long RF pulse
 - May wake up all the neighbors
• Extension in WiseMAC
 - Use of ACK messages to learn about the receivers' sampling times
 - Send just before the receiver wakes up
Synchronous Sleep Scheduling

- Periodic duty-cycled sleep schedules
- Transmitters know in advance when their intended receiver will be awake
MAC Protocols for WSNs in the literature

Part 4
MAC Protocols for WSNs

• Very active research field
 - starting from 2000 (1 paper)
 - exponential growth (2004, 16+ papers)
 • was an open field
 - today?
 • Too many
 • Should propose a novel approach and show the efficiency over all existing methods
The comparison below is according to the classification put forward in the book chapter "Energy-Efficient Medium Access Control" by K. Langendoen and G. Halkes [BibTeX]

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Year</th>
<th>Channels</th>
<th>Organization</th>
<th>Notification</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMACS</td>
<td>2000-10</td>
<td>N</td>
<td>frames</td>
<td>schedule</td>
<td></td>
</tr>
<tr>
<td>CSMA/ARC</td>
<td>2001-07</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>simulation, WeC mote</td>
</tr>
<tr>
<td>PACT</td>
<td>2001-10</td>
<td>1</td>
<td>frames</td>
<td>listening</td>
<td>GloMoSim</td>
</tr>
<tr>
<td>PicoRadio</td>
<td>2001-11</td>
<td>N+1</td>
<td>random</td>
<td>wakeup</td>
<td>simulation</td>
</tr>
<tr>
<td>STEM</td>
<td>2002-01</td>
<td>data+ctrl</td>
<td>random</td>
<td>wakeup</td>
<td>simulation</td>
</tr>
<tr>
<td>Preamble sampling</td>
<td>2002-04</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>GloMoSim</td>
</tr>
<tr>
<td>[Arisha:2002]</td>
<td>2002-05</td>
<td>1</td>
<td>frames</td>
<td>schedule</td>
<td>simulation</td>
</tr>
<tr>
<td>S-MAC</td>
<td>2002-06</td>
<td>1</td>
<td>slots</td>
<td>listening</td>
<td>Rene mote, OMNeT++, Qualnet, GloMoSim, TOSSIM, ns-2</td>
</tr>
<tr>
<td>LPL</td>
<td>2002-11</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>Mica</td>
</tr>
<tr>
<td>PEDAMACS</td>
<td>2002-12</td>
<td>1</td>
<td>frames</td>
<td>schedule</td>
<td>TOSSIM</td>
</tr>
<tr>
<td>Sift</td>
<td>2003-05</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>ns-2</td>
</tr>
<tr>
<td>T-MAC</td>
<td>2003-11</td>
<td>1</td>
<td>slots</td>
<td>listening</td>
<td>OMNeT++, Mica2, EYES MSP430, TNodes, GloMoSim</td>
</tr>
<tr>
<td>TRAMA</td>
<td>2003-11</td>
<td>1</td>
<td>frames</td>
<td>schedule</td>
<td>Qualnet, ns-2</td>
</tr>
<tr>
<td>WiseMAC</td>
<td>2003-11</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>GloMoSim, simulation</td>
</tr>
<tr>
<td>RATE EST</td>
<td>2004-03</td>
<td>2</td>
<td>random</td>
<td>wakeup</td>
<td>ns-2</td>
</tr>
<tr>
<td>SS-TDMA</td>
<td>2004-03</td>
<td>1</td>
<td>frames</td>
<td>schedule</td>
<td>prowler, Mica2</td>
</tr>
<tr>
<td>BMA</td>
<td>2004-04</td>
<td>1</td>
<td>frames</td>
<td>schedule</td>
<td></td>
</tr>
<tr>
<td>DMAC</td>
<td>2004-04</td>
<td>1</td>
<td>slots</td>
<td>listening</td>
<td>ns-2</td>
</tr>
<tr>
<td>LMAC</td>
<td>2004-06</td>
<td>1</td>
<td>frames</td>
<td>schedule</td>
<td>OMNeT++</td>
</tr>
<tr>
<td>S-MAC/AL</td>
<td>2004-06</td>
<td>1</td>
<td>slots</td>
<td>listening</td>
<td>ns-2, Mica2</td>
</tr>
<tr>
<td>CSMA-MPS</td>
<td>2004-09</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>simulation</td>
</tr>
<tr>
<td>B-MAC</td>
<td>2004-11</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>Mica2, ns-2</td>
</tr>
<tr>
<td>AI-LMAC</td>
<td>2004-12</td>
<td>1</td>
<td>frames</td>
<td>listening</td>
<td>OMNeT++</td>
</tr>
<tr>
<td>BitMAC</td>
<td>2005-01</td>
<td>N</td>
<td>frames</td>
<td>schedule</td>
<td>BTnode</td>
</tr>
<tr>
<td>MMAC</td>
<td>2005-04</td>
<td>1</td>
<td>frames</td>
<td>schedule</td>
<td>ns-2</td>
</tr>
<tr>
<td>PMAC</td>
<td>2005-04</td>
<td>1</td>
<td>hybrid</td>
<td>listening</td>
<td>ns-2</td>
</tr>
<tr>
<td>SCP-MAC</td>
<td>2005-07</td>
<td>1</td>
<td>slots</td>
<td>listening</td>
<td>Mica2</td>
</tr>
<tr>
<td>SEESAW</td>
<td>2005-07</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>simulation, Mica2</td>
</tr>
<tr>
<td>FLAMA</td>
<td>2005-11</td>
<td>1</td>
<td>frames</td>
<td>schedule</td>
<td>Qualnet, Mica2</td>
</tr>
<tr>
<td>Z-MAC</td>
<td>2005-11</td>
<td>1</td>
<td>hybrid</td>
<td>listening</td>
<td>ns-2, Mica2</td>
</tr>
<tr>
<td>f-MAC</td>
<td>2006-02</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>ns-2</td>
</tr>
<tr>
<td>X-MAC</td>
<td>2006-05</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>TelosB</td>
</tr>
<tr>
<td>Crankshaft</td>
<td>2007-01</td>
<td>1</td>
<td>hybrid</td>
<td>listening</td>
<td>OMNeT++, TNodes</td>
</tr>
<tr>
<td>RI-MAC</td>
<td>2008-11-05</td>
<td>1</td>
<td>random</td>
<td>listening</td>
<td>ns-2, MICAZ</td>
</tr>
</tbody>
</table>

MAC Alphabet Soup: http://www.st.ewi.tudelft.nl/~koen/MACsoup/
Taxonomy

Random Access Protocols
- No organization in time

Slotted Access Protocols
- Organized in sleep/active slots

Schedule-based Protocols
- Organized in slots and frames, TDMA

Contention Based Protocols
Random Access Protocols

• **B-MAC**
 - J. Polastre, J. Hill, and D. Culler, Versatile low power media access for wireless sensor networks, in SenSys 2004

• **WiseMAC**
Slotted Protocols

- **S-MAC**

- **T-MAC**

- **D-MAC**
Schedule based Protocols
TDMA based (framed)

• PEDAMACS

• LMAC
 - L. van Hoesel and P. Havinga, A lightweight medium access protocol (LMAC) for wireless sensor networks, in INSS 2004.
Taxonomy for this lecture
Random Access Protocols
B-MAC (Berkeley MAC)

- Combines
 - LPL/Preamble Sampling
 - Clear Channel Assessment: optimized carrier sense
 - Acknowledgements
- Reconfigurable
- Based on CSMA, No RTS/CTS
 - CA is left to upper layers, not a part but can be added
B-MAC

- Often considered as the default WSN MAC protocol
 - Used in TinyOS 1.0 and 2.0

- Advantages
 - Simplicity, instant access, adaptability, scalability, configurability

- Disadvantages
 - No solution to hidden terminal problem
 - Long preambles
WiseMAC

- Improvement over Preamble Sampling (LPL):
 - mark sampling schedule of neighbors
 - when sending wait for right moment (short preamble)
 - account for clock drift: calculate the preamble length according to drift and sampling period
WiseMAC

• Automatic adaptation to load:
 - low -> long preambles
 - high -> short preambles

• Ineffective for broadcast traffic
Summary for Random Access Protocols

• Flexible to handle
 - Different node densities
 - Different system loads
• Dynamic changes can be accommodated
• No need for synchronization
• On the other hand,
 - Hidden terminal problem (since based on CSMA)
 - Difficult to support local broadcasts
Slotted Protocols

Part 6
Sensor MAC (S-MAC)

- Improvement over CSMA/CA
 - periodic listen and sleep
 - overhearing avoidance
 - adaptive listening
 - message passing
Sensor-MAC (S-MAC)

- Improvement over CSMA/CA
 - Idea: Switch nodes off, ensure that neighboring nodes turn on simultaneously to allow packet exchange (rendez-vous)
 - periodic listen and sleep
 - Only in these **active periods**, packet exchanges happen
 - Need to also exchange wakeup schedule between neighbors
 - When awake, essentially perform RTS/CTS
 - Use SYNCH, RTS, CTS phases
S-MAC

- **Fixed duty cycle**
- **Schedules are established such that neighboring nodes have synchronous sleep and listen periods.**
- **Complete cycle: Listen/Sleep → Frame**
S-MAC

Synchronization

- SYNC packets are exchanged periodically to maintain schedule synchronization.

- SYNCHRONIZATION PERIOD: Period for a node to send a SYNC packet.
- Receivers will adjust their timer counters immediately after they receive the SYNC packet.
S-MAC

Synchronization

• Virtual Clusters
 - Formed via the schedule exchanges

• New node:
 - If received a schedule from a neighbor, join this virtual cluster, follow this schedule
 - If not, randomly choose a schedule and form a virtual cluster
S-MAC
Synchronization

• What if multiple schedules are received?
 - The node on the border will follow both schedules.
 - When it broadcasts a packet, it needs to do it twice, first for nodes on schedule 1 and then for those on schedule 2.
S-MAC

Collision Avoidance

- S-MAC is based on contention, i.e., if multiple neighbors want to talk to a node at the same time, they will try to send when the node starts listening.
 - Similar to IEEE802.11, i.e. use RTS/CTS mechanism to address the hidden terminal problem
 - Perform carrier sense before initiating a transmission
S-MAC

Overhearing Avoidance

• Physical and Virtual Carrier Sensing
 - RTS/CTS messages include message transmission time including time for ACK
 - All the immediate neighbors of the sender and receiver go to sleep after they hear an RTS or CTS packet.
 - Overhearing long data packets are avoided!!
S-MAC
Adaptive Listening

• Reduce multi-hop latency due to periodic sleep
• BASIC IDEA: Let the node who overhears its neighbors transmissions wake up for a short period of time at the end of each transmission.

Both neighbors will learn about how long the transmission is from the duration field in the RTS and CTS packets.
• They are able to adaptively wake up when the transmission is over.
• Reduce latency by at least half
S-MAC
Message Passing

• Long messages are broken down into smaller packets and sent continuously once the channel is acquired by RTS/CTS handshake.
• Increases the sleep time, but leads to fairness problems.
• Other nodes sleep during the entire message time

Fairness 🙁 ➔ 🎁 Energy
Msg-level latency
Timeout-MAC (T-MAC)

- In S-MAC, active period is of constant length
- What if no traffic actually happens?
 - Nodes stay awake needlessly long
- Idea: Prematurely go back to sleep mode when no traffic has happened for a certain time (=timeout)! T-MAC
 - Adaptive duty cycle!
- One ensuing problem: Early sleeping
 - C wants to send to D, but is hindered by transmission A → B
DMAC (Data gathering MAC)

- Staggers the active times according to the level on the convergecast tree
- Receive from children, transmit to parent
 - 3-slot gap is used to prevent interference
- Uses CSMA with ACKs
DMAC (Data gathering MAC)

• Advantages
 - Addresses the latency issue

• Disadvantages
 - Suitable for convergecast, not for local gossip
 - Could not pass the simulation stage
Summary for Slotted Access Protocols

• Positives
 - Loose synchronization, scalability, adaptive duty cycling according to load

• Problems:
 - Border nodes in SMAC?
 - Varying cluster sizes
 • Large clusters reduce the nr. of nodes that follow multiple schedules but increases latency
 • No support for adaptive cluster size
Schedule Based Protocols
TDMA based (framed)
Schedule Based Protocols
TDMA based (framed)

- Collision-free
- Reduced idle listening, overhearing
 - PEDAMACS
 - LMAC
PEDAMACS (Power Efficient Delay Aware Medium Access)

• For continuous data gathering applications.

• Assumptions:
 - A single access point (AP) exists in the network and all nodes communicate with this AP.
 - AP has no energy constraints and is capable of transmitting at higher power levels when needed so that it can reach any node in the network in a single hop.
 - The sensor nodes have limited transmission power and will reach the AP using multiple hops.
PEDAMACS

• 3 major phases
 - Topology learning phase (uses CSMA)
 - Topology collection phase (uses CSMA)
 - Scheduling phase
• Followed by data collection according to the schedule
• To handle topology changes, PEDAMACS runs an adjustment procedure
PEDAMACS

• Advantages
 - Collision-free access
 - Reduces latency

• Disadvantages
 - Centralized approach
 - The assumption of sink reaching all the nodes (obstacles, multi-path effects)
 - Use of CSMA in the initialization
LMAC

Lightweight Medium Access Control

- Scheduled communication
 - Collision-free access
 - Energy efficient — easily support low duty cycles
- Time slot contents:
 - Control Message
 - Data Message; Higher protocol layer message(s)
- Synchronization is achieved in a hierarchical manner
Choosing a time slot

- Reuse of time slots after > 2 hops
- No “base station” for time slot allocation
- CM contains list of occupied time slots
 - New nodes can easily join after a frame period
Summary

• Advantages
 - Localized and adaptive timeslot selection
 - Energy efficient, lightweight

• Shortcomings
 - Dependent on the number of time slots, so to the density and connectivity of the network.
 - Not adaptive to the changing density
 - What if the network is too dense?
 - Solution:
 • A mechanism that reduces the maximal connectivity in the network.
Current Trends
Current Trends

- Hybrid Protocols
- IEEE 802.15.4 standard
Hybrid Protocols
Zebra-MAC (Z-MAC)

• Runs on top of B-MAC
• Combines TDMA and CSMA features

<table>
<thead>
<tr>
<th>CSMA</th>
<th>TDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros</td>
<td>Pros</td>
</tr>
<tr>
<td>- Simple</td>
<td>- Naturally avoids collisions</td>
</tr>
<tr>
<td>- Scalable</td>
<td></td>
</tr>
<tr>
<td>Cons</td>
<td>Cons</td>
</tr>
<tr>
<td>- Collisions due to hidden terminals</td>
<td>- Complexity of scheduling</td>
</tr>
<tr>
<td>- RTS/CTS is overhead</td>
<td>- Synchronization needed</td>
</tr>
</tbody>
</table>
Z-MAC

- Neighborhood discovery through ping messages containing known neighbors
- Two-hop neighborhood used as input for a scheduling algorithm (DRAND)

The Transmission Rule:
- If owner of slot
 - Take a random backoff
 - if channel is clear, transmit
- Else
 - Wait for To
 - Take a random backoff
 - if channel is clear, transmit
Z-MAC

- When a node loses too many packets
 - Broadcasts notification for high-contention mode
 - Nodes do not contend for slots owned by 2nd hop neighbors to prevent collisions due to hidden terminal problem
 - After a timeout, it falls back to normal operation
- Very tolerant to clock drift (falls back to CSMA operation)
IEEE 802.15.4

- IEEE standard for low-rate WPAN applications
- Goals: low-to-medium bit rates, moderate delays without too stringent guarantee requirements, low energy consumption
- Physical layer
 - 20 kbps over 1 channel @ 868-868.6 MHz (Europe)
 - 40 kbps over 10 channels @ 905 - 928 MHz (USA)
 - 250 kbps over 16 channels @ 2.4 GHz (global)
- MAC protocol
 - Single channel at any one time
 - Combines contention-based and schedule-based schemes
 - Asymmetric: nodes can assume different roles
IEEE 802.15.4

- Star networks: devices (RFD) are associated with coordinators (FFD)
 - Forming a PAN, identified by a PAN identifier
- Coordinator
 - Bookkeeping of devices, address assignment, generate beacons
 - Talks to devices and peer coordinators
- Beacon-mode superframe structure
 - GTS assigned to devices upon request
Conclusions

• There is no single, best MAC protocol that outperforms all others
• MAC duty cycles radio to reduce energy consumption
 - trade-off performance (latency, throughput)
• Simplicity is important (memory footprint)
• Application specific needs are important in the design space
Papers for next week
