Detection Basics

H.Birkan YILMAZ¹

¹Bogazici University, Department of Computer Engineering, Turkey

CMPE591
Outline

1 Recall
 - Optimality Frameworks

2 Example Questions
 - Bayesian Optimality
 - Minimax Optimality
 - NP Optimality
Goal

Main goal is to decide between two hypotheses

\[H_0 \quad Y \sim p_0 \]
\[H_1 \quad Y \sim p_1 \]
Optimality Frameworks

Bayesian Optimality (again)

<table>
<thead>
<tr>
<th>Known Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_0, \pi_1)</td>
</tr>
<tr>
<td>(c_{ij})</td>
</tr>
<tr>
<td>(p_i)</td>
</tr>
</tbody>
</table>

Goal

Minimizing the average cost.
MiniMax Optimality (again)

Known Parameters
- c_{ij}
- p_i

Goal
Minimizing maximum cost or equivalently finding the equalizer rule.

$$\min_{\delta} \max \{ R_0(\delta), R_1(\delta) \}$$
Neyman-Pearson Optimality (again)

Known Parameters

- p_i

Goal

Maximizing $P_D = \int_{\Gamma_1} p_1(y) \, dy$ \quad s.t. $P_F = \int_{\Gamma_1} p_0(y) \, dy \leq \alpha$

Remark

Maximum P_D is achieved when $P_F = \alpha$ for continuous conditional pdfs.
Example

Suppose Y is a random variable that, under H_0, has pdf

$$p_0(y) = \begin{cases} \frac{2}{3}(y + 1) & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

and, under hypothesis H_1, has pdf

$$p_1(y) = \begin{cases} 1 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Find the Bayes rule and minimum Bayes risk for testing H_0 versus H_1 with uniform costs and equal priors.
Example

Suppose Y is a random variable that, under H_0, has pdf

$$p_0(y) = \begin{cases} \frac{2}{3}(y + 1) & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

and, under hypothesis H_1, has pdf

$$p_1(y) = \begin{cases} 1 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Find the Minimax rule and Minimax risk for uniform costs.
Example

Suppose Y is a random variable that, under H_0, has pdf

$$p_0(y) = \begin{cases} \frac{2}{3}(y + 1) & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

and, under hypothesis H_1, has pdf

$$p_1(y) = \begin{cases} 1 & 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Find the Neyman-Pearson rule and the corresponding detection probability for false-alarm probability $\alpha \in (0, 1)$.